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miniRaman Spectrometer for 
Analisys of Honey and Syrups

INTRODUCTION

People consume sweet foods mainly because the body associates sweet taste with the presence 
of substances that can be quickly converted into energy (sucrose, fructose, glucose) [1]. The 
main industrial sweet food product is regular sugar, which consists almost entirely of sucrose. 
However, due to its high calorie content and metabolic peculiarities, excessive consumption of 
sucrose leads to the development of serious diseases (type II diabetes, cardiovascular diseases, 
obesity, dental caries, etc.). Over the past decade, the problem of sucrose overconsumption has 
reached the proportions of a global pandemic. Accordingly, consumers and foodstuff producers 
are increasingly seeking to use regular sugar substitutes. The low-calorie artificial sweeteners 
(saccharin, aspartame, etc.) are well-known since the 1980s, but debate about their negative 
impact on the body (liver and bladder toxicity, carcinogenicity, etc.) is still ongoing, so they often 
cause consumer mistrust. Against this background, natural sweeteners are becoming increasingly 
popular, first of all, bee honey, containing only ≤ 5% sucrose [2], and plant-based compounds 
(sorbitol, erythritol, xylitol, steviol glycosides, glycyrrhizin, sweet-tasting proteins, etc.).

Humans do not have complete control over the production of honey by bees, so monitoring its 
composition, especially the content of contaminants (pesticides, antibiotics, etc.), is mandatory [2]. 
Also, large-scale falsification of honey is currently observed all over the world, usually with various 
syrups (malt, rice, corn, inverted sugar), which makes the task of authenticity checking especially 
relevant. In turn, composition analysis is necessary in the production of plant-based sweeteners 
and the development of food products based on them [3]. Moreover, it cannot be ruled out that the 
problem of falsification will also occur here. Adulterations by sucrose/glucose may be particularly 
dangerous for people suffering from diabetes, insulin resistance, atherosclerosis, etc.

To solve the above-mentioned problems, Raman 
spectroscopy can be used, which has already 
proven its effectiveness in the analysis of honey 
[2], natural [3] and artificial sweeteners [4].

This Application Note aims to demonstrate the 
potential of Lightnovo® miniRaman® spectrometer 
[5], the most compact serial Raman instrument, 
for the analysis of liquid sweet food products, in 
particular, for the differentiation of high-sucrose 
(sugar syrup) and low-/non-sucrose ones (honey, as 
well as syrups based on natural sugar substitutes).
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SAMPLES

The following substances were tested in this study.

1. Natural bee honey: a late summer honey from linden, white clover, and 
wildflowers. The honey originated from Lolland, Denmark.

2. Maple syrup based on natural sugar substitutes (hereinafter “maple 
syrup”): a commercial product, consisting of corn fiber, sweeteners (sorbitol, 
erythritol and steviol glycosides), molasses, salt and flavouring agent.

3. Syrup based on natural sugar substitutes (hereinafter “sweet syrup”): 
a commercial product of the same manufacturer as the previous one, 
consisting of corn fiber, sweeteners (sorbitol, erythritol and steviol 
glycosides), molasses and salt.

4. Sugar syrup: a homemade homogeneous solution of commercial white 
sugar in water, which were taken in a proportion of 2:1 (by volume).

Sugar, maple and sweet syrups were purchased from a supermarket in 
Birkerød, Denmark, while honey was purchased from local manufacturer in 
Denmark.

Figure 1. 
(a) The setup used for the measurements: miniRaman power 785 nm spectrometer mounted on the 
Z focusing stage; 
(b) Lightnovo Miraspec software with the spectra of the samples (baseline subtracted, normalized); 
(c) honey sample on a stainless-steel substrate.

Lightnovo miniRaman Power 785 nm spectrometer [5] equipped with Middle Working Distance 
Probe (10mm) mounted in Precise Z Focusing Stage accessory was used for the measurements, 
Figure 1(a). Lightnovo® Miraspec®, the spectrometer’s bundled software installed on a personal 
computer, was used to control measurement process, data collection and postprocessing, 
Figure 1(b). The measurement parameters: output power (on the sample) 63 mW, image sensor 
gain 0, exposure 250 ms, number of averages 10 (per spectrum), background correction ON.

MEASUREMENTS AND DATA PROCESSING

(c)

(b)(a)
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Figure 2 shows the raw spectra measured 10 times subsequently for each sample. Each spectrum 
is marked in the order it was acquired by a number from m1 to m10 and a specific color. Raman 
intensity is expressed here in arbitrary units corresponding to the percentage of the saturation 
level of the spectrometer’s CMOS image sensor.

As it can be seen from Figure 2, the raw spectra 
are quite reproducible in terms of curve 
shape. All the samples provide distinct Raman 
features. Honey, maple syrup, and sweet syrup 
also exhibit significant fluorescence, which 
however does not yield to the saturation of 
the detector, meaning that the fluorescence 
background could be removed by applying 
baseline subtraction algorithm. On the 
other hand, sugar syrup exhibited minimal 
fluorescence and showed clearly resolved 
Raman peaks.

If examined carefully, it can be seen that there 
is a general trend in all the measurements: 
the fluorescence background goes down with 
each subsequent measurement. This could 
be explained by the effect of photobleaching 
(reduction of fluorescence in time when 
exposed to the laser). However, the first 
measurement stands out of this trend in 
all the cases, i.e. there is a rapid increase of 
fluorescence between the first (m1) and 
second (m2) measurement followed up by 
slow decay of fluorescence at each subsequent 
one (m3, …, m10) due to photobleaching. The 
possible explanation of this initial increase of 
fluorescence could be the thermal effect of 
laser radiation on the sample, diffusion in the 
sample, and sample inhomogeneity.

Figure 2. Raw spectra of honey, maple, sweet and 
sugar syrups. For each sample, spectra m1, …, m10 
were measured sequentially.

RESULTS

The measurement procedure was as follows. A sample – a drop (~5 ml) of the analyzed substance 
– was deposited onto a stainless-steel substrate, Figure 2(c). The last one was placed on the base 
of Z Focusing Stage in such a way that the laser radiation fell approximately into the middle of the 
drop. The stage’s micrometric head was used to obtain the maximum level of Raman signal. For 
each sample 10 spectra were measured on the same laser spot location.

The spectra were stored in raw and postprocessed forms using Miraspec software. For 
processing, the program first applied the rolling-circle filter with radius 4000 and scaleY 0.1 to 
correct baseline, and then the min-max algorithm to normalize Raman intensity to the range 
[0…1], Figure 1(b).

Finally, to differentiate the samples, their baseline-subtracted and normalized spectra were 
subjected to the Principal Component Analysis (PCA). For this purpose, the Scikit-Learn Python 
package [6] were applied with preliminary data standardization using the StandardScaler 
algorithm.
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Figure 3. Baseline-corrected and normalized 
spectra of honey, maple, sweet, and sugar syrups. 
The spectra numbers m1, …, m10 are the same as 
in Figure 2.

Figure 4. Loading plots (spectra) of first five 
principal components derived from PCA of the 
spectra in Figure 3.

The postprocessed spectra are provided in Figure 3. As it can be seen, baseline correction allows 
to effectively remove the effects of both fluorescence and photobleaching, and the resulting 
normalized spectra show good reproducibility between measurements. To better evaluate the 
postprocessing effect, each set of spectra m1, …, m10 from Figures 2 and 3 was averaged to 
improve its data quality and enhance signal-to-noise ratio, and the resulting mean spectra for 
pre- and postprocessed data are compared respectively in aligned Figures A1 and A2 (Annex 1).

For all samples in Figure 3, the most intensive Raman peaks fall into the wavenumber range 
(400 … 1600) cm-1. The spectra of honey, maple and sweet syrups contain a lot of overlapping 
peaks, which is obviously due to complex compositions of these substances. On the contrary, 
relatively simple sugar syrup produces many narrow and well-defined peaks. The spectra of 
honey, syrups based on natural sweeteners and sugar syrup have own unique spectral features. 
Therewith, the curves for maple and sweet syrups, as expected, look very similar to each other.

Figure 4 shows the loading spectra for the first five principal components (PCs) calculated 
withing PCA of the entire data set (40 spectra) from Figure 3. The plots for PC1, PC2 and PC3 
demonstrate intensive peaks in the range of interest (400 … 1600) cm-1, while for PC4, PC5 
and higher-order PCs (not shown in Figure 4) the major peculiarities are located chiefly at 
>1600 cm-1. Thus, considering PC1, PC2, and PC3 should be sufficient to cluster the data and 
differentiate the samples.
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(a)

(b)

Figure 5. Impact of principal component number 
on: (a) the cumulative explained variance; (b) the 
explained variance ratio.

This inference is supported by Figure 5, 
which shows the impact of the PCs number 
on (a) the cumulative explained variance, 
and (b) the explained variance ratio, i.e. the 
fraction of the total variance that falls on a 
specific PC. Together, PC1, PC2 and PC3 
can explain 75.2% of the data variation. At 
the same time, other PCs have such a small 
contribution that their consecutive addition 
to the analysis increases this value by only a 
few percent.

The presence of an «elbow» in Figure 5 (b) is 
in good agreement with the heuristic «elbow 
rule» used in cluster analysis: the point, at 
which the rate of change of the explained 
variance drops sharply, determines the 
optimal number of clusters. In this case, it 
is obviously equal to the number of samples 
under study, i.e. 4.

Figures 6 (a) and (b) show, respectively, the 2D scatter plots of scores for PC2 and PC3 against 
PC1, while Figure 6 (c) show the 3D scatter plot of scores for all three these components.

It is clear from Figure 6 that the data for different types of the samples used in this study are 
well clustered and can be linearly separated already based on two main principal components 
PC1 and PC2. The cluster for sugar syrup is located quite far from the others along the PC1 
axis. Obviously, this is due to the clear difference between its spectra and spectra of other 
samples, see Figures 3, whereas, according to PCA approach, PC1 is calculated in such a way as 
to correspond to the maximum dispersion of the data. In turn, maple and sweet syrups, as well 
as honey, have more similar spectra, Figures 3, and the distance between their clusters along 
PC1 is significantly smaller, Figure 6. Moreover, the clusters of the last two even overlap along 
this axis.

Surprisingly, the maple and sweet syrups, which nominally have minor compositional 
differences, can also be differentiated because their clusters are clearly separated along the 
PC1 axis. This can be explained by the presence of a flavoring agent in maple syrup, which 
probably provides some spectral peculiarities that are not evident during a cursory inspection. 
Moreover, the inclusion of the third component PC3 into consideration allows to even better 
separate their clusters, and also make it possible to simultaneously differ them (with a small 
error) from honey one, Figure 6 (b).

The honey cluster is very distant from the other ones along the PC2 axis, Figure 6 (a). This 
can probably be explained by the fact that the complex composition of honey includes some 
compounds producing unique but not intense enough spectral peaks. At the same time, the 
clusters for honey and sugar syrup are located far from each other both along PC1 and PC2 
axes, Figure 6, which can have important practical significance for the honey authentication 
checking.
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Figure 6. Score plots of the first three principal components derived from PCA of the spectra in 
Figure 3: (a) PC2 vs. PC1; (b) PC3 vs. PC1; (c) PC3 vs. PC2 vs. PC1 (3D scatter plot).

An interesting feature is that the spread of data points within each cluster definitely correlates 
with the compositional complexity of the studied compound. E.g., sugar syrup, besides water, 
contains only sucrose, and its cluster has smallest size for all three PCs. On the contrary, honey 
and maple syrup have sophisticated compositions and give the widest cluster, which also have 
an elongated form. All this may indicate, for example, diffusion processes in the sample during 
measurements, or inhomogeneity of analyzed substance, e.g., due to fractionating.
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• Lightnovo miniRaman 785 nm spectrometer is capable of directly, i.e., without sample 
preparation, measuring Raman spectra of honey, natural sweeteners-based and sucrose-
based syrups. 

• The software supplied with miniRaman spectrometer allows to efficiently remove the intense 
background fluorescence signal, as well as the photobleaching effect, from Raman spectra 
of honey and the natural sweeteners-based syrups. Therewith, excellent reproducibility of 
measurements is provided.

• Conventional Principal Component Analysis of Raman spectra allows to clearly differentiate 
of honey, the natural sweeteners-based and sucrose-based syrups using only three first 
principal components.

• This all indicates that Lightnovo miniRaman spectrometer is a powerful tool for analysis of 
honey and syrups, and in particular could be used to detect possible adulteration of honey 
or natural sugar substitutes, as well as to control the manufacturing processes of liquid food 
products based on them.

CONCLUSIONS
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ANNEX 1. 

EFFICIENCY OF POSTPROCESSING IN 
MIRASPEC SOFTWARE

For all samples, each of the sets (m1, …, m10) of the raw spectra, Figure 2, and Miraspec 
postprocessed spectra, Figure 3, were averaged. A special script written in Python programming 
language was used for this purpose. Averaging improves data quality and enhances the signal-
to-noise ratio, allowing better inspection of spectral features and evaluation of the effect 
of postprocessing. Figures A1 and A2 show the raw and postprocessed averaged spectra, 
respectively.

Figure A1. Averaged raw spectra of honey, maple, 
sweet and sugar syrups.

Figure A2. Averaged baseline-subtracted and 
normalized (Miraspec) spectra of honey, maple, 
sweet and sugar syrups.
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The raw spectra in Figure A1, despite the fluorescent background, have some unique peaks that 
could hypothetically be used to differentiate honey, syrups based on natural sweeteners (as a 
class) and sugar syrup. However, this approach does not allow to distinguish between maple and 
sweet syrups, which have very similar spectra due to the resembling chemical compositions. Of 
course, in this particular case, the problem may be solved by the fact that maple syrup gives almost 
twice the strong fluorescence signal, which is most likely due to the presence of flavouring agent. 
Nevertheless, it is obvious that, in the general case, for deep analysis and/or further processing 
of spectra, fluorescence must be completely rejected.

Figure A2 demonstrates that Miraspec software copes with this task perfectly, completely 
eliminating the slope of the baseline. At the same time, no noticeable distortion of the Raman 
peaks is observed, which is clearly visible in the spectrum of sugar syrup. This sample produces 
relatively weak fluorescence that doesn’t significantly suppress its Raman peaks, allowing easy 
comparison of raw and postprocessed spectra. 

Harness the power of Raman 
spectroscopy and make it widely 
accessible for the benefit of 
mankind.
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